Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Rev. bras. eng. biomed ; 29(4): 321-328, dez. 2013. graf
Article in English | LILACS | ID: lil-697279

ABSTRACT

INTRODUCTION: The detection of the somatosensory response (SR) is an important tool for the neurophysiological evaluation in the intra and post-operative period of some vascular and spine surgeries. Particularly, the SR identification with a maximum false positive ratio by means of Objective Response Detection (ORD) techniques could lead to a less subjective procedure. In this work a novel ORD, the Rice Detector (RD), is presented and its theoretical critical value is obtained. METHODS: The probability of detection (PD) of RD is assessed for different numbers of eletroencephalographic (EEG) signal epochs (M = 30, 60, 120, 240) and signal-to-noise ratios (-20 to 10 dB, in steps of 1 dB) by means of simulation. The simulated PD curves (PDc) are compared with the theoretical ones and with the PDc of the Magnitude-Squared Coherence (MSC), a well-known ORD technique. The performance of RD and MSC are also compared for real EEG data. The comparison is based on the DP for estimates calculated with M = 30, 60, 120 and 240 epochs. RESULTS: The results showed that the simulated PDc follow the theoretical ones and both the MSC and RD present similar performance, with slight advantage for this latter at low M-values. However, for real data, no statistical significant difference (proportion test with alpha=0.05) was found between MSC and RD. CONCLUSION: Both techniques presented mean detection rates varying from 70% to 90%, even for intermediate M-value (120 epochs), and can be useful for evoked response detection applications.

2.
Braz. j. med. biol. res ; 41(12): 1059-1066, Dec. 2008. graf
Article in English | LILACS | ID: lil-502149

ABSTRACT

The objective of the present study was to determine the adequate cortical regions based on the signal-to-noise ratio (SNR) for somatosensory evoked potential (SEP) recording. This investigation was carried out using magnitude-squared coherence (MSC), a frequency domain objective response detection technique. Electroencephalographic signals were collected (International 10-20 System) from 38 volunteers, without history of neurological pathology, during somatosensory stimulation. Stimuli were applied to the right posterior tibial nerve at the rate of 5 Hz and intensity slightly above the motor threshold. Response detection was based on rejecting the null hypothesis of response absence (significance level α= 0.05 and M = 500 epochs). The best detection rates (maximum percentage of volunteers for whom the response was detected for the frequencies between 4.8 and 72 Hz) were obtained for the parietal and central leads mid-sagittal and ipsilateral to the stimulated leg: C4 (87 percent), P4 (82 percent), Cz (89 percent), and Pz (89 percent). The P37-N45 time-components of the SEP can also be observed in these leads. The other leads, including the central and parietal contralateral and the frontal and fronto-polar leads, presented low detection capacity. If only contralateral leads were considered, the centro-parietal region (C3 and P3) was among the best regions for response detection, presenting a correspondent well-defined N37; however, this was not observed in some volunteers. The results of the present study showed that the central and parietal regions, especially sagittal and ipsilateral to the stimuli, presented the best SNR in the gamma range. Furthermore, these findings suggest that the MSC can be a useful tool for monitoring purposes.


Subject(s)
Humans , Brain Mapping , Cerebral Cortex/physiology , Evoked Potentials, Somatosensory/physiology , Tibial Nerve/physiology , Electroencephalography , Models, Neurological , Reaction Time
SELECTION OF CITATIONS
SEARCH DETAIL